LETTERS 2010 Vol. 12, No. 6 ¹³²⁴-**¹³²⁷**

ORGANIC

Asymmetric Synthesis and Photophysical Properties of Benzopyrano- or Naphthopyrano-Fused Helical Phosphafluorenes

Naohiro Fukawa,† Takuya Osaka,† Keiichi Noguchi,‡ and Ken Tanaka*,†

Department of Applied Chemistry, Graduate School of Engineering, and Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

tanaka-k@cc.tuat.ac.jp

Received January 28, 2010

Enantioenriched benzopyrano- and naphthopyrano-fused helical phosphafluorenes have been synthesized by the rhodium-catalyzed enantioselective double [2 + **²** + **2] cycloaddition of dialkynyl phosphorus compounds with phenol- or naphthol-linked tetraynes. Photophysical properties of these phosphafluorenes are also disclosed.**

Phosphafluorenes have attracted much attention as interesting candidates for organic semiconducting materials.¹ To synthesize a structurally diverse array of densely substituted phosphafluorenes, the synthetic methods that allow regioselective functionalization of the phosphafluorene core are highly attractive.^{1,2} The most frequently employed method for their synthesis is biaryl coupling leading to 2,2′ dihalobiphenyls followed by the reaction with dichlorophos-

phines using a strong base and subsequent oxidation (Scheme 1).^{1,2a-d} However, this method requires prior preparation of regioselectively substituted arenes and harsh reaction conditions.

On the other hand, our research group demonstrated that cationic rhodium(I)/biaryl bisphosphine complexes are highly effective catalysts for the $[2 + 2 + 2]$ cycloaddition to produce substituted arenes under mild reaction conditions. $3-5$

[†] Department of Applied Chemistry.

[‡] Instrumentation Analysis Center.

⁽¹⁾ For selected recent examples, see: (a) Geramita, K.; McBee, J.; Tilley, T. D. *J. Org. Chem.* **2009**, *74*, 820. (b) Chen, R.-F.; Zhu, R.; Fan, Q.-L.; Huang, W. *Org. Lett.* **2008**, *10*, 2913. (c) Geramita, K.; McBee, J.; Tao, Y.; Segalman, R. A.; Tilley, T. D. *Chem. Commun.* **2008**, 5107.

⁽²⁾ For selected recent examples, see: (a) Widhalm, M.; Aichinger, C.; Mereiter, K. *Tetrahedron Lett.* **2009**, *50*, 2425. (b) Chen, R.-F.; Fan, Q.- L.; Zheng, C.; Huang, W. *Org. Lett.* **2006**, *8*, 203. (c) Dubrovina, N. V.; Jiao, H.; Tararov, V. I.; Spannenberg, A.; Kadyrov, R.; Monsees, A.; Christiansen, A.; Börner, A. *Eur. J. Org. Chem.* **2006**, 3412. (d) Leroux, F.; Mangano, G.; Schlosser, M. *Eur. J. Org. Chem.* **2005**, 5049. (e) Tsuji, H.; Komatsu, S.; Kanda, Y.; Umehara, T.; Saeki, T.; Tamao, K. *Chem.* Lett. **2006**, 35, 758. (f) Fadhel, S.; Szieberth, D.; Deborde, V.; Lescop, C.; Nyulászi, L.; Hissler, M.; Réau, R. Chem.—Eur. J. **2009**, 15, 4914.

Lett. 2006, 35, 758. (f) Fadhel, S.; Szieberth, D.; Deborde, V.; Lescop, C.; (3) For our account, see: (a) Tanaka, K. Synlett 2007, 1977. (b) Tanaka, N. Chem. –Eur. J. 2009, 15, 4914. (3) For our account, see: (a) Tanaka,

Furthermore our research group demonstrated that the rhodium-catalyzed double $[2 + 2 + 2]$ cycloaddition is an effective method for the synthesis of symmetric biaryls,⁶ spiranes,⁷ and helicene-like molecules.⁸ We anticipated that the rhodium-catalyzed double $[2 + 2 + 2]$ cycloaddition
between dialkynyl phosphine oxides^{9,10} and tetraynes would be useful for the synthesis of symmetric and regioselectively substituted phosphafluorenes 11 because of the facile preparation of dialkynyl phosphine oxides from the corresponding terminal alkynes and dichlorophosphine oxides (Scheme 2).

In this paper, we disclose the synthesis of benzopyrano- and naphthopyrano-fused helical phosphafluorenes by the rhodiumcatalyzed enantioselective double $[2 + 2 + 2]$ cycloaddition. Photophysical properties of these phosphafluorenes are also disclosed.

We first examined the rhodium-catalyzed double $[2 + 2]$ + 2] cycloaddition of dialkynyl phosphinate **1a** and terminal tetrayne **2a** leading to phosphafluorene **3aa** by using a cationic rhodium(I)/H₈-BINAP $[2,2'-bis$ (diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl] complex as a catalyst. We were pleased to find that the desired reaction proceeded at room temperature to give **3aa** in 38% isolated yield, although excess **2a** (2.5 equiv) was required due to the rapid homo- $[2 + 2 + 2]$ cycloaddition of 2a (Scheme 3).

We next examined the synthesis of helical phosphafluorenes by the rhodium-catalyzed enantioselective double $[2 + 2 + 2]$ cycloaddition (Table 1).^{12,13} After optimization of reaction conditions, the reaction of dialkynyl phosphinate **1a** and phenol-linked terminal tetrayne **2b** proceeded at room temperature for only 1 h to give benzopyrano-fused helical phosphafluorene **3ab** in 40% isolated yield with 73% ee by using a cationic rhodium(I)/(*R*)-tol-BINAP [2,2′-bis(di-*p*tolylphosphino)-1,1′-binaphthyl] complex as a catalyst (entry 1). In this reaction, the homo- $[2 + 2 + 2]$ cycloaddition of **2b** proceeded slowly, therefore a slight excess of **2b** (1.2 equiv) was sufficient. Thus the scope of helical phosphafluorene synthesis by the double $[2 + 2 + 2]$ cycloaddition was examined. Dialkynyl phosphine oxides **1b**,**c** could react with

⁽⁴⁾ For a review of rhodium-catalyzed $[2 + 2 + 2]$ cycloadditions, see: Fujiwara, M.; Ojima, I. In *Modern Rhodium-Catalyzed Organic Reactions*; Evans, P. A., Ed.; Wiley-VCH: Weinheim, Germany, 2005; Chapter 7, p 129.

(5) For recent reviews of transition metal-catalyzed $\begin{bmatrix} 2+2+2 \end{bmatrix}$

⁽⁵⁾ For recent reviews of transition metal-catalyzed [2 + ² + 2] cycloadditions, see: (a) Galan, B. R.; Rovis, T. *Angew. Chem., Int. Ed.* **2009**, *48*, 2830. (b) Tanaka, K. *Chem. Asian J.* **2009**, *4*, 508. (c) Varela, J. A.; Saa´, C. *Synlett* **2008**, 2571. (d) Shibata, T.; Tsuchikama, K. *Org. Biomol. Chem.* **²⁰⁰⁸**, 1317. (e) Heller, B.; Hapke, M. *Chem. Soc. Re*V*.* **²⁰⁰⁷**, *36*, 1085. (f) Agenet, N.; Buisine, O.; Slowinski, F.; Gandon, V.; Aubert, C.; Malacria, M. *Organic Reactions*; RajanBabu, T. V., Ed.; John Wiley & Sons: Hoboken, NJ, 2007; Vol. 68, p 1. (g) Chopade, P. R.; Louie, J. *Ad*V*. Synth. Catal.* **2006**, *348*, 2307. (h) Gandon, V.; Aubert, C.; Malacria, M. *Chem. Commun.* **2006**, 2209. (i) Kotha, S.; Brahmachary, E.; Lahiri, K. *Eur. J. Org. Chem.* **2005**, 4741. (j) Gandon, V.; Aubert, C.; Malacria, M. *Curr. Org. Chem.* **2005**, *9*, 1699. (k) Yamamoto, Y. *Curr. Org. Chem.* **2005**, *9*, 503.

⁽⁶⁾ For examples by our research group, see: (a) Nishida, G.; Suzuki, N.; Noguchi, K.; Tanaka, K. *Org. Lett.* **2006**, *8*, 3489. (b) Nishida, G.; Ogaki, S.; Yusa, Y.; Yokozawa, T.; Noguchi, K.; Tanaka, K. *Org. Lett.* **2008**, *10*, 2849. For examples by other research groups, see: (c) Doherty, S.; Knight, J. G.; Smyth, C. H.; Harrington, R. W.; Clegg, W. *Org. Lett.* **2007**, *9*, 4925. (d) Doherty, S.; Smyth, C. H.; Harrington, R. W.; Clegg, W. *Organometallics* **2008**, *27*, 4837.

⁽⁷⁾ Wada, A.; Noguchi, K.; Hirano, M.; Tanaka, K. *Org. Lett.* **2007**, *9*, 1295.

⁽⁸⁾ For the rhodium-catalyzed enantioselective double $[2 + 2 + 2]$ cycloaddition of dialkynylketones with phenol- or naphthol-linked tetraynes, see: Tanaka, K.; Fukawa, N.; Suda, T.; Noguchi, K. *Angew. Chem., Int. Ed.* **2009**, *48*, 5470.

⁽⁹⁾ Enantioselective synthesis of *P*-stereogenic alkynylphosphine oxides by the rhodium-catalyzed $[2 + 2 + 2]$ cycloaddition of dialkynyl phosphine oxides with 1,6-diynes was reported;see: Nishida, G.; Noguchi, K.; Hirano, M.; Tanaka, K. *Angew. Chem., Int. Ed.* **2008**, *47*, 3410.

⁽¹⁰⁾ For transition metal-catalyzed $[2 + 2 + 2]$ cycloadditions involving alkynyl phosphorus compounds, see: (a) Heller, B.; Gutnov, A.; Fischer, C.; Drexler, H.-J.; Spannenberg, A.; Redkin, D.; Sundermann, C.; Sundermann, B. *Chem.* $-Eur.$ J. 2007, 13, 1117. (b) Nishida, G.; Noguchi, K.; Hirano, M.; Tanaka, K. *Angew. Chem., Int. Ed.* **2007**, *46*, 3951. (c) Kondoh, A.; Yorimitsu, H.; Oshima, K. *J. Am. Chem. Soc.* **2007**, *129*, 6996. See also refs 6b,c, and d.

⁽¹¹⁾ Syntheses of heterofluorenes by transition metal-catalyzed $[2 + 2]$ + 2] cycloadditions of heteroatom-bridged 1,6-diynes with monoynes have been reported. Carbazoles: (a) Witulski, B.; Alayrac, C. *Angew. Chem., Int. Ed.* **2002**, *41*, 3281. (b) Alayrac, C.; Schollmeyer, D.; Witulski, B. *Chem. Commun* **2009**, 1464. Silafluorenes: (c) Matsuda, T.; Kadowaki, S.; Goya, T.; Murakami, M. *Org. Lett.* **2007**, *9*, 133. Dibenzofurans and azadibenzofurans: (d) Komine, Y.; Kamisawa, A.; Tanaka, K. *Org. Lett.* **2009**, *11*, 2361.

⁽¹²⁾ For enantioselective syntheses of helicenes and helicene-like molecules by transition metal-mediated $[2 + 2 + 2]$ cycloadditions, see: (a) Stará, I. G.; Starý, I.; Kollárovič, A.; Teplý, F.; Vyskočil, Š.; Šaman, D. *Tetrahedron Lett.* **1999**, *40*, 1993. (b) Teply´, F.; Stara´, I. G.; Stary´, I.; Kollárovič, A.; Šaman, D.; Vyskočil, Š.; Fiedler, P. *J. Org. Chem.* 2003, *⁶⁸*, 5193. (c) Caeiro, J.; Pen˜a, D.; Cobas, A.; Pe´rez, D.; Guitia´n, E. *Ad*V*. Synth. Catal.* **2006**, *348*, 2466. (d) Tanaka, K.; Kamisawa, A.; Suda, T.; Noguchi, K.; Hirano, M. *J. Am. Chem. Soc.* **2007**, *129*, 12078. See also ref 8.

⁽¹³⁾ For a recent review of helicene synthesis, see: Urbano, A. *Angew. Chem., Int. Ed.* **2003**, *42*, 3986.

⁽¹⁴⁾ Nonphotochemical syntheses of higher order $(\geq[8])$ helicenes or helicene-like molecules have been reported in a limited number; see: (a) Fox, J. M.; Katz, T. J. *J. Org. Chem.* **1999**, *64*, 302. (b) Norsten, T. B.; Peters, A.; McDonald, R.; Wang, M.; Branda, N. R. *J. Am. Chem. Soc.* **2001**, *123*, 7447. (c) Han, S.; Bond, A. D.; Disch, R. L.; Holmes, D.; Schulman, J. M.; Teat, S. J.; Vollhardt, K. P. C.; Whitener, G. D. *Angew. Chem., Int. Ed.* **2002**, *41*, 3223. (d) Han, S.; Anderson, D. R.; Bond, A. D.; Chu, H. V.; Disch, R. L.; Holmes, D.; Schulman, J. M.; Teat, S. J.; Vollhardt, K. P. C.; Whitener, G. D. *Angew. Chem., Int. Ed.* **2002**, *41*, 3227. (e) Miyasaka, M.; Rajca, A.; Pink, M.; Rajca, S. *J. Am. Chem. Soc.* **2005**, *127*, 13806. (f) Sehnal, P.; Stará, I. G.; Šaman, D.; Tichý, M.; Míšek, J.; Cvačka, J.; Rulíšek, L.; Chocholoušová, J.; Vacek, J.; Goryl, G.; Szymonski, M.; Císařová, I.; Starý, I. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 13169.

Table 1. Rh-Catalyzed Asymmetric Synthesis of Benzopyranoor Naphthopyrano-Fused Helical Phosphafluorenes*^a*

^{*a*} Reactions were conducted with $[Rh(cod)_2]BF_4$ (20 mol %), ligand (20 mol %), $1a-e$ (1 equiv), and $2a-e$ (1.2 equiv) in $(CH_2Cl)_2$ at rt for 1 h. Ligand: (R) -tol-BINAP (entries $1-4$ and 9), (R) -H₈-BINAP (entries $5-8$). ^b Isolated yield. ^{*c*} For 6 h. ^{*d*} A mixture of olefin geometric isomers. *^e* ee value of the major olefin geometric isomer.

tetrayne **2b** to yield the corresponding phosphafluorenes in higher yields than that from dialkynyl phosphinate **1a**, although lower enantioselectivities were observed (entries 2 and 3). Not only phenyl-substituted dialkynyl phosphinate **1a** but also the methyl-substituted one **1d** could participate in this reaction albeit in low yield (entry 4). With respect to tetraynes, naphthol-linked terminal tetrayne **2c** could also react with **1a** to yield more overcrowded naphthopyranofused helical phosphafluorene **3ac**, possessing nine successive rings,¹⁵ by using (R) -H₈-BINAP as a ligand (entry 5). Not only the phenol-linked terminal tetrayne **2b** but also the internal tetrayne **2d** could participate in this reaction by using (R) -H₈-BINAP as a ligand (entries $6-8$). The introduction of the *π*-component at the 2- and 7-positions as well as the 4- and 5-positions of the phosphafluorene core is of interest for further extension of the conjugation. Therefore the reaction of dialkynyl phosphinate **1e** and styryl-substituted internal tetrayne **2e** leading to 2,7-styryl-substituted phosphafluorene **3ee** was investigated. Although the product yield was low, the desired reaction proceeded at room temperature by using the cationic rhodium(I)/(*R*)-tol-BINAP catalyst (entry 9).

In our previous report, gradual racemization of a benzopyrano-fused helical fluorenone proceeded in CH_2Cl_2 solution at room temperature. 8 On the contrary, the benzopyrano-fused helical phosphafluorenes of Table 1 possess stable helical chirality in CH_2Cl_2 solution at room temperature presumably due to the longer length of the C-P bond than the C-C bond. Indeed, the ORTEP diagram of benzopyrano-fused helical phosphafluorene (\pm) -3bb revealed that two 2-alkoxyphenyl rings of **3bb** largely overlapped each other (Figure 1).

Figure 1. ORTEP diagram of helical phosphafluorene (\pm) -3bb (top view) with ellipsoids at 30% probability.

Figure 2. ORTEP diagram of helical phosphafluorene (\pm) -3bb (side view) with ellipsoids at 30% probability.

To compare the photophysical properties between 4,5- and 3,6-di(2-alkoxyphenyl)phosphafluorenes, the synthesis of 3,6-

⁽¹⁵⁾ For selected examples, see: (a) Adriaenssens, L.; Severa, L.; Šálová, T.; Císařová, I.; Pohl, R.; Šaman, D.; Rocha, S. V.; Finney, N. S.; Pospíšil, L.; Slavíček, P.; Teplý, F. *Chem.-Eur. J.* 2009, 15, 1072. (b) Graule, S.; Rudolph, M.; Vanthuyne, N.; Autschbach, J.; Roussel, C.; Crassous, J.; Reau, R. *J. Am. Chem. Soc.* **2009**, *131*, 3183. (c) Takenaka, N.; Sarangthem, R. S.; Captain, B. *Angew. Chem., Int. Ed.* **2008**, *47*, 9708. (d) Misek, J.; Teply, F.; Stara, I. G.; Tichy, M.; Saman, D.; Cisarova, I.; Vojtisek, P.; Stary, I. *Angew. Chem., Int. Ed.* **2008**, *47*, 3188. (e) Nakano, K.; Hidehira, Y.; Takahashi, K.; Hiyama, T.; Nozaki, K. *Angew. Chem., Int. Ed.* **2005**, *44*, 7136. (f) Wigglesworth, T. J.; Sud, D.; Norsten, T. B.; Lekhi, V. S.; Branda, N. R. *J. Am. Chem. Soc.* **2005**, *127*, 7272. (g) Phillips, K. E. S.; Katz, T. J.; Jockusch, S.; Lovinger, A. J.; Turro, N. J. *J. Am. Chem. Soc.* **2001**, *123*, 11899, and references cited therein. See also refs 14a,b, and 14e.

di(2-alkoxyphenyl)phosphafluorene **3cf** by the reaction of dialkynyl phosphine oxide **1c** and phenol-linked terminal tetrayne **2f** was investigated. The desired reaction proceeded at room temperature by using the cationic rhodium(I)/tol-BINAP catalyst to yield **3cf** in good yield (Scheme 4).

^{*a*} Measured in CHCl₃. ^{*b*} Concentration: 1.0×10^{-5} M. ^{*c*} Excited at 280 nm. *^d* Values are calculated as 100% ee. *^e* Values were measured with use of a mixture of olefin geometric isomers.

Absorption and emission data of representative phosphafluorenes are shown in Table 2 and Figure 3. As expected, 4,5-di(2-alkoxynaphthyl)phosphafluorene **3ab** (entry 2) showed large red shifts of absorption and emission maxima compared with phosphafluorene **3aa**, which contained no 2-alkoxyphenyl group (entry 1). Further red shifts were observed in 4,5 di(2-alkoxynaphthyl)phosphafluorene **3ac** (entry 6). On the other hand, 3,6-di(2-alkoxyphenyl)phosphafluorene **3cf** showed smaller red shifts compared with **3aa** (entry 9). The substituents on the phosphorus appeared to have a small impact on absorption and emission maxima (entries $2-4$). As shown in the ORTEP diagram of phosphafluorene (\pm) -3bb (Figure 2), two phenyl rings at the 1- and 8-positions and the phosphafluorene core are in the twisted conformation, which would inhibit the conjugation. Indeed, 1,8-diphenyl- (**3ab**, entry 2) and 1,8-dimethylphosphafluorenes (**3db**, entry 5) showed close absorption and emission maxima. With respect to the substituents at the 2- and 7-positions of the phosphafluorene core, 2,7-dimethyl (**3ad**, entry 7) and 2,7-distyryl

Figure 3. (a) UV-vis spectra and (b) emission spectra of **3aa**, **3ab**, **3ac, 3ee, and 3cf** in CHCl₃ (1.0 \times 10⁻⁵ M).

substitution (**3ee**, entry 8) showed a small shift of emission maxima compared with **3ab** (entry 2) and **3db** (entry 5), respectively, while the emission intensity of **3ee** significantly increased (Figure 3). Optical rotation values of representative helical phosphafluorenes are also shown in Table 2. Interestingly, the more overcrowded naphthopyrano-fused phosphafluorene **3ac** (entry 6) exhibits a smaller optical rotation value than that of the less overcrowded benzopyrano-fused phosphafluorene **3ab** (entry 2).

In conclusion, we have successfully synthesized enantioenriched benzopyrano- or naphthopyrano-fused helical phosphafluorenes by the rhodium-catalyzed enantioselective double $[2 + 2 + 2]$ cycloaddition of dialkynyl phosphorus compounds with phenol- or naphthol-linked tetraynes. We believe that the compounds synthesized in this paper are fascinating examples of helicene-like species containing heteroatoms in the helical backbone.¹⁵ Future work will focus on application of this methodology to the synthesis of various heterofluorenes.

Acknowledgment. This work was supported partly by a Grant-in-Aid for Scientific Research (No. 20675002) from MEXT, Japan. We thank Takasago International Corporation for the gift of H_8 -BINAP and tol-BINAP, and Umicore for generous support in supplying a rhodium complex.

Supporting Information Available: Experimental procedures, compound characterization data, and an X-ray crystallographic information file. This material is available free of charge via the Internet at http://pubs.acs.org.

OL100227K